HyperPhysics***** Nuclear
For the generation of electrical power by fission, see Nuclear power.
An induced fission reaction. A slow-moving neutron is absorbed by a uranium-235 nucleus turning it briefly into a uranium-236 nucleus; this in turn splits into fast-moving lighter elements (fission products) and releases three free neutrons. In nuclear physics and nuclear chemistry, nuclear fission is a nuclear reaction in which the nucleus of an atom splits into smaller parts (lighter nuclei), often producing free neutrons and photons (in the form of gamma rays), and releasing a tremendous amount of energy. The two nuclei produced are most often of comparable size, typically with a mass ratio around 3:2 for common fissile isotopes. [1][2] Most fissions are binary fissions, but occasionally (2 to 4 times per 1000 events), three positively-charged fragments are produced in a ternary fission. The smallest of these ranges in size from a proton to an argon nucleus. Fission is usually an energetic nuclear reaction induced by a neutron, although it is occasionally seen as a form of spontaneous radioactive decay, especially in very high-mass-number isotopes. The unpredictable composition of the products (which vary in a broad probabilistic and somewhat chaotic manner) distinguishes fission from purely quantum-tunnelling processes such as proton emission, alpha decay and cluster decay, which give the same products every time. Nuclear fission produces energy for nuclear power and to drive the explosion of nuclear weapons. Both uses are possible because certain substances called nuclear fuels undergo fission when struck by fission neutrons, and in turn emit neutrons when they break apart. This makes possible a self-sustaining chain reaction that releases energy at a controlled rate in a nuclear reactor or at a very rapid uncontrolled rate in a nuclear weapon. |